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Abstract. Apprenticeship learning (AL) is a kind of Learning from
Demonstration techniques where the reward function of a Markov Deci-
sion Process (MDP) is unknown to the learning agent and the agent has
to derive a good policy by observing an expert’s demonstrations. In this
paper, we study the problem of how to make AL algorithms inherently
safe while still meeting its learning objective. We consider a setting where
the unknown reward function is assumed to be a linear combination of
a set of state features, and the safety property is specified in Probabilis-
tic Computation Tree Logic (PCTL). By embedding probabilistic model
checking inside AL, we propose a novel counterexample-guided approach
that can ensure safety while retaining performance of the learnt policy.
We demonstrate the effectiveness of our approach on several challenging
AL scenarios where safety is essential.

1 Introduction

The rapid progress of artficial intelligence (AI) comes with a growing concern
over its safety when deployed in real-life systems and situations. As highlighted in
[3], if the objective function of an AI agent is wrongly specified, then maximizing
that objective function may lead to harmful results. In addition, the objective
function or the training data may focus only on accomplishing a specific task and
ignore other aspects, such as safety constraints, of the environment. In this paper,
we propose a novel framework that combines explicit safety specification with
learning from data. We consider safety specification expressed in Probabilistic
Computation Tree Logic (PCTL) and show how probabilistic model checking
can be used to ensure safety and retain performance of a learning algorithm
known as apprenticeship learning (AL).

We consider the formulation of apprenticeship learning by Abbeel and Ng [1].
The concept of AL is closely related to reinforcement learning (RL) where an
agent learns what actions to take in an environment (known as a policy) by
maximizing some notion of long-term reward. In AL, however, the agent is not
given the reward function, but instead has to first estimate it from a set of ex-
pert demonstrations via a technique called inverse reinforcement learning [18]
. The formulation assumes that the reward function is expressible as a linear
combination of known state features. An expert demonstrates the task by max-
imizing this reward function and the agent tries to derive a policy that can
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match the feature expectations of the expert’s demonstrations. Apprenticeship
learning can also be viewed as an instance of the class of techniques known as
Learning from Demonstration (LfD). One issue with LfD is that the expert often
can only demonstrate how the task works but not how the task may fail. This is
because failure may cause irrecoverable damages to the system such as crashing
a vehicle. In general, the lack of “negative examples” can cause a heavy bias in
how the learning agent constructs the reward estimate. In fact, even if all the
demonstrations are safe, the agent may still end up learning an unsafe policy.

The key idea of this paper is to incorporate formal verification in appren-
ticeship learning. We are inspired by the line of work on formal inductive syn-
thesis [10] and counterexample-guided inductive synthesis [22]. Our approach
is also similar in spirit to the recent work on safety-constrained reinforcement
learning [11]. However, our approach uses the results of model checking in a
novel way. We consider safety specification expressed in probabilistic computa-
tion tree logic (PCTL). We employ a verification-in-the-loop approach by embed-
ding PCTL model checking as a safety checking mechanism inside the learning
phase of AL. In particular, when a learnt policy does not satisfy the PCTL for-
mula, we leverage counterexamples generated by the model checker to steer the
policy search in AL. In essence, counterexample generation can be viewed as
supplementing negative examples for the learner. Thus, the learner will try to
find a policy that not only imitates the expert’s demonstrations but also stays
away from the failure scenarios as captured by the counterexamples.

In summary, we make the following contributions in this paper.

– We propose a novel framework for incorporating formal safety guarantees in
Learning from Demonstration.

– We develop a novel algorithm called CounterExample Guided Apprenticeship
Learning (CEGAL) that combines probabilistic model checking with the
optimization-based approach of apprenticeship learning.

– We demonstrate that our approach can guarantee safety for a set of case
studies and attain performance comparable to that of using apprenticeship
learning alone.

The rest of the paper is organized as follows. Section 2 reviews background
information on apprenticeship learning and PCTL model checking. Section 3
defines the safety-aware apprenticeship learning problem and gives an overview
of our approach. Section 4 illustrates the counterexample-guided learning frame-
work. Section 5 describes the proposed algorithm in detail. Section 6 presents a
set of experimental results demonstrating the effectiveness of our approach. Sec-
tion 7 discusses related work. Section 8 concludes and offers future directions.

2 Preliminaries

2.1 Markov Decision Process and Discrete-Time Markov Chain

Markov Decision Process (MDP) is a tuple M = (S, A, T, γ, s0, R), where
S is a finite set of states; A is a set of actions; T : S × A × S → [0, 1] is



Safety-Aware Apprenticeship Learning 3

a transition function describing the probability of transitioning from one state
s ∈ S to another state by taking action a ∈ A in state s; R : S → R is a reward
function which maps each state s ∈ S to a real number indicating the reward
of being in state s; s0 ∈ S is the initial state; γ ∈ [0, 1) is a discount factor
which describes how future rewards attenuate when a sequence of transitions is
made. A deterministic and stationary (or memoryless) policy π : S → A for an
MDP M is a mapping from states to actions, i.e. the policy deterministically
selects what action to take solely based on the current state. In this paper, we
restrict ourselves to deterministic and stationary policy. A policy π for an MDP
M induces a Discrete-Time Markov Chain (DTMC) Mπ = (S, Tπ, s0), where
Tπ : S × S → [0, 1] is the probability of transitioning from a state s to another

state in one step. A trajectory τ = s0
Tπ(s0,s1)>0
−−−−−−−−→ s1

Tπ(s1,s2)>0
−−−−−−−−→ s2, ..., is a

sequence of states where si ∈ S. The accumulated reward of τ is
∞∑
i=0

γiR(si).

The value function Vπ : S → R measures the expectation of accumulated reward

E[
∞∑
i=0

γiR(si)] starting from a state s and following policy π. An optimal policy

π for MDP M is a policy that maximizes the value function [4].

2.2 Apprenticeship Learning via Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) aims at recovering the reward function R
of M\R = (S,A, T, γ, s0) from a set of m trajectories ΓE = {τ0, τ1, ..., τm−1}
demonstrated by an expert. Apprenticeship learning (AL) [1] assumes that the
reward function is a linear combination of state features, i.e. R(s) = ωT f(s)
where f : S → [0, 1]k is a vector of known features over states S and ω ∈ R

k is an
unknown weight vector that satisfies ||ω||2 ≤ 1. The expected features of a policy
π are the expected values of the cumulative discounted state features f(s) by fol-
lowing π onM , i.e. µπ = E[

∑∞
t=0 γ

tf(st)|π]. Let µE denote the expected features
of the unknown expert’s policy πE . µE can be approximated by the expected

features of expert’s m demonstrated trajectories µ̂E = 1
m

∑
τ∈ΓE

∞∑
t=0

γtf(st) if m is

large enough. With a slight abuse of notations, we use µΓ to also denote the ex-
pected features of a set of paths Γ . Given an error bound ε, a policy π∗ is defined
to be ε-close to πE if its expected features µπ∗ satisfies ||µE − µπ∗ ||2 ≤ ε. The
expected features of a policy can be calculated by using Monte Carlo method,
value iteration or linear programming [1,4].

The algorithm proposed by Abbeel and Ng [1] starts with a random policy π0
and its expected features µπ0 . Assuming that in iteration i, a set of i candidate
policiesΠ = {π0, π1, ..., πi−1} and their corresponding expected features {µπ|π ∈
Π} have been found, the algorithm solves the following optimization problem.

δ = max
ω

min
π∈Π

ωT (µ̂E − µπ) s.t. ||ω||2 ≤ 1 (1)

The optimal ω is used to find the corresponding optimal policy πi and the
expected features µπi . If δ ≤ ε, then the algorithm terminates and πi is produced
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as the output. Otherwise, µπi is added to the set of features for the candidate
policy set Π and the algorithm continues to the next iteration.

2.3 PCTL Model Checking

Probabilistic model checking can be used to verify properties of a stochastic
system such as “is the probability that the agent reaches the unsafe area within
10 steps smaller than 5%?”. Probabilistic Computation Tree Logic (PCTL) [7]
allows for probabilistic quantification of properties. The syntax of PCTL includes
state formulas and path formulas [13]. A state formula φ asserts property of a
single state s ∈ S whereas a path formula ψ asserts property of a trajectory.

φ ::= true | li | ¬φi | φi ∧ φj | Ponp∗ [ψ] (2)

ψ ::= Xφ | φ1U
≤kφ2 | φ1Uφ2 (3)

where li is atomic proposition and φi, φj are state formulas; on∈ {≤,≥, <,>
}; Ponp∗ [ψ] means that the probability of generating a trajectory that satisfies
formula ψ is on p∗. Xφ asserts that the next state after initial state in the
trajectory satisfies φ; φ1U

≤kφ2 asserts that φ2 is satisfied in at most k transitions
and all preceding states satisfy φ1; φ1Uφ2 asserts that φ2 will be eventually
satisfied and all preceding states satisfy φ1. The semantics of PCTL is defined
by a satisfaction relation |= as follows.

s |= true iff state s ∈ S (4)

s |= φ iff state s satisfies the state formula φ (5)

τ |= ψ iff trajectory τ satisfies the path formula ψ. (6)

Additionally, |=min denotes the minimal satisfaction relation [6] between τ

and ψ. Defining pref(τ) as the set of all prefixes of trajectory τ including τ

itself, then τ |=min ψ iff (τ |= ψ) ∧ (∀τ ′ ∈ pref(τ)\τ, τ ′ 2 ψ). For instance,
if ψ = φ1U

≤kφ2, then for any finite trajectory τ |=min φ1U
≤kφ2, only the

final state in τ satisfies φ2. Let P (τ) be the probability of transitioning along a
trajectory τ and let Γψ be the set of all finite trajectories that satisfy τ |=min ψ,
the value of PCTL property ψ is defined as P=?|s0 [ψ] =

∑
τ∈Γψ

P (τ). For a DTMC

Mπ and a state formula φ = P≤p∗ [ψ], Mπ |= φ iff P=?|s0 [ψ] ≤ p∗.
A counterexample of φ is a set CEX ⊆ Γψ that satisfies

∑
τ∈CEX

P (τ) >

p∗. Let P(Γ ) =
∑
τ∈Γ

P (τ) be the sum of probabilities of all trajectories in a

set Γ . Let CEXφ ⊆ 2Γψ be the set of all counterexamples for a formula φ

such that (∀CEX ∈ CEXφ,P(CEX) > p∗) and (∀Γ ∈ 2Γψ\CEXφ,P(Γ ) ≤
p∗). A minimal counterexample is a set CEX ∈ CEXφ such that ∀CEX ′ ∈
CEXφ, |CEX| ≤ |CEX ′|. By converting DTMC Mπ into a weighted directed
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functions with respect to the squared Euclidean distances between s and the 4
states with the highest or lowest rewards as shown in Fig. 1(a). In addition, a
specification Φ formalized in PCTL is used to capture the safety requirement.
In (7), p∗ is the required upper bound of the probability of reaching an unsafe
state within t = 64 steps.

Φ ::= P≤p∗ [true U≤t
unsafe] (7)

Let πE be the optimal policy under the reward map shown in Fig. 1(a). The
probability of entering an unsafe region within 64 steps by following πE is 24.6%.
Now consider the scenario where the expert performs a number of demonstra-
tions by following πE . All demonstrated trajectories in this case successfully reach
the goal areas without ever passing through any of the unsafe regions. Fig. 1(b)
shows a representative trajectory (in blue) among 10, 000 such demonstrated
trajectories. The resulting reward map by running the AL algorithm on these
10, 000 demonstrations is shown in Fig. 1(c). Observe that only the goal area has
been learnt whereas the agent is oblivious to the unsafe regions (treating them in
the same way as other dark cells). In fact, the probability of reaching an unsafe
state within 64 steps with this policy turns out to be 82.6% (thus violating the
safety requirement by a large margin). To make matters worse, the value of p∗

may be decided or revised after a policy has been learnt. In those cases, even the
original expert policy πE may be unsafe, e.g., when p∗ = 20%. Thus, we need to
adapt the original AL algorithm so that it will take into account of such safety
requirement. Fig. 1(d) shows the resulting reward map learned using our pro-
posed algorithm (to be described in detail later) for p∗ = 20%. It clearly matches
well with the color differentiation in the original reward map and captures both
the goal states and the unsafe regions. This policy has an unsafe probability of
19.0%. We are now ready to state our problem.

Definition 1. The safety-aware apprenticeship learning (SafeAL) prob-
lem is, given an MDP\R, a set of m trajectories {τ0, τ1, ..., τm−1} demonstrated
by an expert, and a specification Φ, to learn a policy π that satisfies Φ and is
ε-close to the expert policy πE.

Remark 1. We note that a solution may not always exist for the SafeAL problem.
While the decision problem of checking whether a solution exists is of theoretical
interest, in this paper, we focus on tackling the problem of finding a policy π
that satisfies a PCTL formula Φ (if Φ is satisfiable) and whose performance is as
close to that of the expert’s as possible, i.e. we relax the condition on µπ being
ε-close to µE .

4 A Framework for Safety-Aware Learning

In this section, we describe a general framework for safety-aware learning. This
novel framework utilizes information from both the expert demonstrations and a
verifier. The proposed framework is illustrated in Fig. 2. Similar to the counterexample-
guided inductive synthesis (CEGIS) paradigm [22], our framework consists of a
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verifier and a learner. The verifier checks if a candidate policy satisfies the safety
specification Φ. In case Φ is not satisfied, the verifier generates a counterexam-
ple for Φ. The main difference from CEGIS is that our framework considers not
only functional correctness, e.g., safety, but also performance (as captured by
the learning objective). Starting from an initial policy π0, each time the learner
learns a new policy, the verifier checks if the specification is satisfied. If true,
then this policy is added to the candidate set, otherwise the verifier will gener-
ate a (minimal) counterexample and add it to the counterexample set. During
the learning phase, the learner uses both the counterexample set and candidate
set to find a policy that is close to the (unknown) expert policy and far away
from the counterexamples. The goal is to find a policy that is ε-close to the ex-
pert policy and satisfies the specification. For the grid-world example introduced
in Section 3, when p∗ = 5% (thus presenting a stricter safety requirement com-
pared to the expert policy πE), our approach produces a policy with only 4.2%
of reaching an unsafe state within 64 steps (with the correspondingly inferred
reward mapping shown in Fig. 1(d)).

Fig. 2: Our safety-aware learning framework. Given an initial policy π0, a spec-
ification Φ and a learning objective (as captured by ε), the framework iterates
between a verifier and a learner to search for a policy π∗ that satisfies both Φ
and ε. One invariant that this framework maintains is that all the πi’s in the
candidate policy set satisfy Φ.

Learning from a (minimal) counterexample cexπ of a policy π is similar to
learning from expert demonstrations. The basic principle of the AL algorithm
proposed in [1] is to find a weight vector ω under which the expected reward of
πE maximally outperforms any mixture of the policies in the candidate policy set
Π = {π0, π1, π2, . . .}. Thus, ω can be viewed as the normal vector of the hyper-
plane ωT (µ−µE) = 0 that has the maximal distance to the convex hull of the set
{µπ | π ∈ Π} as illustrated in the 2D feature space in Fig. 3(a). It can be shown
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In essence, we take a weighted-sum approach for solving the multi-objective
optimization problem (9). Assuming that ΠS = {π1, π2, π3, . . .} is a set of
candidate policies that all satisfy Φ, CEX = {cex1, cex2, cex3, . . .} is a set of
counterexamples. We introduce a parameter k and change (9) into a weighted
sum optimization problem (10). Note that π and π̃ can be different. The op-
timal ω solved from (10) can be used to generate a new policy πω by using
algorithms such as policy iteration. We use a probabilistic model checker, such
as PRISM [13], to check if πω satisfies Φ. If it does, then it will be added to ΠS .
Otherwise, a counterexample generator, such as COMICS [9], is used to generate
a (minimal) counterexample cexπω , which will be added to CEX.

Algorithm 1 Counterexample-Guided Apprenticeship Learning (CEGAL)

1: Input:
2: M ← A partially known MDP\R; f ← A vector of feature functions
3: µE ← The expected features of expert trajectories {τ0, τ1, . . . , τm}
4: Φ← Specification; ε← Error bound for the expected features;
5: σ, α ∈ (0, 1)← Error bound σ and step length α for the parameter k;
6: Initialization:
7: inf ← 0, sup← 1, k ← sup . Initialize multi-optimization parameter k
8: ΠS ← {π0} . Initialize candidate set with an initial safe policy

9: CEX ← ∅ . Initialize counterexample set as empty
10: π1 ← Policy learnt from µE via apprenticeship learning
11: Iteration i (i ≥ 1):
12: Verifier:

13: status ←Model Checker(M,πi, Φ)
14: If status = SAT, then go to Learner

15: If status = UNSAT
16: cexπi ← Counterexample Generator(M,πi, Φ)
17: Add cexπi to CEX and solve µcexπi

, go to Learner

18: Learner:

19: If status = SAT
20: If ||µE − µπi ||2 ≤ ε, then return πi

21: . Converge. πi is ε-close to πE

22: Add πi to ΠS , inf ← k, k ← sup . Update ΠS , inf and reset k
23: If status = UNSAT
24: If |k − inf | ≤ σ, then return π∗ ← argmin

π∈ΠS

||µE − µπ||2

25: . Converge. k is too close to its lower bound.
26: k ← α · inf + (1− α)k . Decrease k to learn for safety
27: ωi+1 ← argmax

ω
min

π∈ΠS ,π̃∈ΠS ,cex∈CEX
ωT (k(µE −µπ)+ (1− k)(µπ̃ −µcex))

28: . Note that the multi-objective optimization function recovers AL when k = 1
29: πi+1, µπi+1 ← Compute the optimal policy πi+1 and its expected features

µπi+1 for the MDP M with reward R(s) = ωT
i+1f(s)

30: Go to next iteration

Algorithm 1 describes CEGAL in detail. With a constant sup = 1 and a
variable inf ∈ [0, sup] for the upper and lower bounds respectively, the learner
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determines the value of k within [inf, sup] in each iteration depending on the
outcome of the verifier and uses k in solving (10) in line 27. Like most nonlinear
optimization algorithms, this algorithm requires an initial guess, which is an
initial safe policy π0 to make ΠS nonempty. A good initial candidate would
be the maximally safe policy for example obtained using PRISM-games [15].
Without loss of generality, we assume this policy satisfies Φ. Suppose in iteration
i, an intermediate policy πi learnt by the learner in iteration i− 1 is verified to
satisfy Φ, then we increase inf to inf = k and reset k to k = sup as shown in
line 22. If πi does not satisfy Φ, then we reduce k to k = α · inf + (1 − α)k as
shown in line 26 where α ∈ (0, 1) is a step length parameter. If |k − inf | ≤ σ

and πi still does not satisfy Φ, the algorithm chooses from ΠS a best safe policy
π∗ which has the smallest margin to πE as shown in line 24. If πi satisfies Φ and
is ε-close to πE , the algorithm outputs πi as show in line 19. For the occasions
when πi satisfies Φ and inf = sup = k = 1, solving (10) is equivalent to solving
(1) as in the original AL algorithm.

Remark 2. The initial policy π0 does not have to be maximally safe, although
such a policy can be used to verify if Φ is satisfiable at all. Naively safe policies
often suffice for obtaining a safe and performant output at the end. Such a policy
can be obtained easily in many settings, e.g., in the grid-world example one safe
policy is simply staying in the initial cell. In both cases, π0 typically has very
low performance since satisfying Φ is the only requirement for it.

Theorem 1. Given an initial policy π0 that satisfies Φ, Algorithm 1 is guar-
anteed to output a policy π∗, such that (1) π∗ satisfies Φ, and (2) the per-
formance of π∗ is at least as good as that of π0 when compared to πE, i.e.
‖µE − µπ∗‖2 ≤ ‖µE − µπ0

‖2.

Proof sketch. The first part of the guarantee can be proven by case splitting.
Algorithm 1 outputs π∗ either when π∗ satisfies Φ and is ε-close to πE , or when
|k − inf | ≤ σ in some iteration. In the first case, π∗ clearly satisfies Φ. In the
second case, π∗ is selected from the set ΠS which contains all the policies that
have been found to satisfy Φ so far, so π∗ satisfies Φ. For the second part of the
guarantee, the initial policy π0 is the final output π∗ if π0 satisfies Φ and is ε-
close to πE . Otherwise, π0 is added to ΠS if it satisfies Φ. During the iteration, if
|k−inf | ≤ σ in some iteration, then the final output is π∗ = argmin

π∈ΠS

||µE−µπ||2,

so it must satisfy ‖µE − µπ∗‖2 ≤ ‖µE − µπ0‖2. If a learnt policy π∗ satisfies Φ
and is ε-close to πE , then Algorithm 1 outputs π∗ without adding it to ΠS .
Obviously ‖µE − µπ‖2 > ε, ∀π ∈ ΠS , so ‖µE − µπ∗‖2 ≤ ‖µE − µπ0

‖2.
Discussion. In the worst case, CEGAL will return the initial safe policy. However,
this can be because a policy that simultaneously satisfies Φ and is ε-close to
the expert’s demonstrations does not exist. Comparing to AL which offers no
safety guarantee and finding the maximally safe policy which has very poor
performance, CEGAL provides a principled way of guaranteeing safety while
retaining performance.
Convergence. Algorithm 1 is guaranteed to converge. Let inft be the t

th assigned
value of inf . After inft is given, k is decreased from k0 = sup iteratively by
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ki = α · inft + (1 − α)ki−1 until either |ki − inft| ≤ σ in line 24 or a new safe
policy is found in line 18. The update of k satisfies the following equality.

|ki+1 − inft|

|ki − inft|
=
α · inft + (1− α)ki − inft

ki − inft
= 1− α (11)

Thus, it takes no more than 1+log1−α
σ

sup−inft
iterations for either the algo-

rithm to converge in line 24 or a new safe policy to be found in line 18. If a new
safe policy is found in line 18, inf will be assigned in line 22 by the current value
of k as inft+1 = k which obviously satisfies inft+1 − inft ≥ (1− α)σ. After the
assignment of inft+1, the iterative update of k resumes. Since sup − inft ≤ 1,
the following inequality holds.

|inft+1 − sup|

|inft − sup|
≤
sup− inft − (1− α)σ

sup− inft
≤ 1− (1− α)σ (12)

Obviously, starting from an initial inf = inf0 < sup, with the alternating
update of inf and k, inf will keep getting close to sup unless the algorithm
converges as in line 24 or a safe policy ε-close to πE is found as in line 19. The
extreme case is that finally inf = sup after no more than sup−inf0

(1−α)σ updates on

inf . Then, the problem becomes AL. Therefore, the worst case of this algorithm
can have two phases. In the first phase, inf increases from inf = 0 to inf = sup.
Between each two consecutive updates (t, t+ 1) on inf , there are no more than

log1−α
(1−α)σ
sup−inft

updates on k before inf is increased from inft to inft+1. Overall,
this phase takes no more than

∑

0≤i<
sup−inf0
(1−α)σ

log1−α
(1− α)σ

sup− inf0 − i · (1− α)σ
=

∑

0≤i< 1
(1−α)σ

log1−α
(1− α)σ

1− i · (1− α)σ

(13)

iterations to reduce the multi-objective optimization problem to original appren-
ticeship learning and then the second phase begins. Since k = sup, the iteration
will stop immediately when an unsafe policy is learnt as in line 24. This phase
will not take more iterations than original AL algorithm does to converge and
the convergence result of AL is given in [1].

In each iteration, the algorithm first solves a second-order cone program-
ming (SOCP) problem (10) to learn a policy. SOCP problems can be solved in
polynomial time by interior-point (IP) methods [12]. PCTL model checking for
DTMCs can be solved in time linear in the size of the formula and polynomial in
the size of the state space [7]. Counterexample generation can be done either by
enumerating paths using the k-shortest path algorithm or determining a critical
subsystem using either a SMT formulation or mixed integer linear programming
(MILP) [23]. For the k-shortest path-based algorithm, it can be computationally
expensive sometimes to enumerate a large amount of paths (i.e. a large k) when
p∗ is large. This can be alleviated by using a smaller p∗ during calculation, which
is equivalent to considering only paths that have high probabilities.
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6 Experiments

We evaluate our algorithm on three case studies: (1) grid-world, (2) cart-pole,
and (3) mountain-car. The cart-pole environment1 and the mountain-car en-
vironment2 are obtained from OpenAI Gym. All experiments are carried out
on a quad-core i7-7700K processor running at 3.6 GHz with 16 GB of mem-
ory. Our prototype tool was implemented in Python3. The parameters are γ =
0.99, ε = 10, σ = 10−5, α = 0.5 and the maximum number of iterations is 50.
For the OpenAI-gym experiments, in each step, the agent sends an action to the
OpenAI environment and the environment returns an observation and a reward
(0 or 1). We show that our algorithm can guarantee safety while retaining the
performance of the learnt policy compared with using AL alone.

6.1 Grid World

We first evaluate the scalability of our tool using the grid-world example. Table 1
shows the average runtime (per iteration) for the individual components of our
tool as the size of the grid-world increases. The first and second columns indicate
the size of the grid world and the resulting state space. The third column shows
the average runtime that policy iteration takes to compute an optimal policy π
for a known reward function. The forth column indicates the average runtime
that policy iteration takes to compute the expected features µ for a known policy.
The fifth column indicates the average runtime of verifying the PCTL formula
using PRISM. The last column indicates the average runtime that generating a
counterexample using COMICS.

Table 1: Average runtime per iteration in seconds.
Size Num. of States Compute π Compute µ MC Cex

8× 8 64 0.02 0.02 1.39 0.014
16× 16 256 0.05 0.05 1.43 0.014
32× 32 1024 0.07 0.08 3.12 0.035
64× 64 4096 6.52 25.88 22.877 1.59

6.2 Cart-Pole from OpenAI Gym

In the cart-pole environment as shown in Fig. 4(a), the goal is to keep the pole
on a cart from falling over as long as possible by moving the cart either to the
left or to the right in each time step. The maximum step length is t = 200. The
position, velocity and angle of the cart and the pole are continuous values and
observable, but the actual dynamics of the system are unknown4.

1 https://github.com/openai/gym/wiki/CartPole-v0
2 https://github.com/openai/gym/wiki/MountainCar-v0
3 https://github.com/zwc662/CAV2018
4 The MDP is built from sampled data. The feature vector in each state contains
30 radial basis functions which depend on the squared Euclidean distances between
current state and other 30 states which are uniformly distributed in the state space.
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However, when the safety threshold becomes very low, e.g., p∗ = 5%, the per-
formance of the learnt policy drops significantly. This reflects the phenomenon
that the tighter the safety condition is the less room for the agent to maneuver
to achieve a good performance.

6.3 Mountain-Car from OpenAI Gym

Our third experiment uses the mountain-car environment from OpenAI Gym.
As shown in Fig. 5(a), a car starts from the bottom of the valley and tries to
reach the mountaintop on the right as quickly as possible. In each time step
the car can perform one of the three actions, accelerating to the left, coasting,
and accelerating to the right. The agent fails if the step length reaches the
maximum (t = 66). The velocity and position of the car are continuous values
and observable while the exact dynamics are unknown5. In this game setting, the
car cannot reach the right mountaintop by simply accelerating to the right. It
has to accumulate momentum first by moving back and forth in the valley. The
safety rules we enforce are shown in Fig. 5(b). They correspond to speed limits
when the car is close to the left mountaintop or to the right mountaintop (in
case it is a cliff on the other side of the mountaintop). Similar to the previous
experiments, we considered 2000 expert demonstrations for which all of them
successfully reach the right mountaintop without violating any of the safety
conditions. The average number of steps for the expert to drive the car to the
right mountaintop is 40. We formalize the safety requirement in PCTL as (15).

(a) (b)

Fig. 5: (a) The original mountain-car environment. (b) The mountain-car envi-
ronment with traffic rules: when the distance from the car to the left edge or the
right edge is shorter than 0.1, the speed of the car should be lower than 0.04.

Φ ::= P≤p∗ [true U≤t (speed ≤ −0.04 ∧ position ≤ −1.1)

∨ (speed ≥ 0.04 ∧ position ≥ 0.5)]
(15)

We compare the different policies using the same set of categories as in the
cart-pole example. The numbers are averaged over 5000 runs. As shown in the
first row, the policy learnt via AL6 has the highest probability of going over

5 The MDP is built from sampled data. The feature vector for each state contains 2
exponential functions and 18 radial basis functions which respectively depend on the
squared Euclidean distances between the current state and other 18 states which are
uniformly distributed in the state space.

6 AL did not converge to an ε-close policy in 50 iterations in this case.
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the speed limits. We observed that this policy made the car speed up all the
way to the left mountaintop to maximize its potential energy. The safest policy
corresponds to simply staying in the bottom of the valley. The policies learnt
via CEGAL for safety threshold p∗ ranging from 60% to 50% not only have
lower probability of violating the speed limits but also achieve comparable per-
formance. As the safety threshold p∗ decreases further, the agent becomes more
conservative and it takes more time for the car to finish the task. For p∗ = 20%,
the agent never succeeds in reaching the top within 66 steps.

Table 3: In the mountain-car environment, lower average steps mean better
performance. The safest policy is synthesized via PRISM-games.

MC Result Avg. Steps Num. of Iters

Policy Learnt via AL 69.2% 54 50

Safest Policy 0.0% Fail N.A.

p∗ = 60% 43.4% 57 9

p∗ = 50% 47.2% 55 17

p∗ = 40% 29.3% 61 26

p∗ = 30% 18.9% 64 17

p∗ = 20% 4.9% Fail 40

7 Related Work

A taxonomy of AI safety problems is given in [3] where the issues of misspecified
objective or reward and insufficient or poorly curated training data are high-
lighted. There have been several attempts to address these issues from different
angles. The problem of safe exploration is studied in [17] and [8]. In particu-
lar, the latter work proposes to add a safety constraint, which is evaluated by
amount of damage, to the optimization problem so that the optimal policy can
maximize the return without violating the limit on the expected damage. An
obvious shortcoming of this approach is that actual failures will have to occur
to properly assess damage.

Formal methods have been applied to the problem of AI safety. In [5], the
authors propose to combine machine learning and reachability analysis for dy-
namical models to achieve high performance and guarantee safety. In this work,
we focus on probabilistic models which are natural in many modern machine
learning methods. In [20], the authors propose to use formal specification to
synthesize a control policy for reinforcement learning. They consider formal spec-
ifications captured in Linear Temporal Logic, whereas we consider PCTL which
matches better with the underlying probabilistic model. Recently, the problem
of safe reinforcement learning was explored in [2] where a monitor (called shield)
is used to enforce temporal logic properties either during the learning phase or
execution phase of the reinforcement learning algorithm. The shield provides a
list of safe actions each time the agent makes a decision so that the temporal
property is preserved. In [11], the authors also propose an approach for con-
troller synthesis in reinforcement learning. In this case, an SMT-solver is used to
find a scheduler (policy) for the synchronous product of an MDP and a DTMC
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so that it satisfies both a probabilistic reachability property and an expected
cost property. Another approach that leverages PCTL model checking is pro-
posed in [16]. A so-called abstract Markov decision process (AMDP) model of
the environment is first built and PCTL model checking is then used to check
the satisfiability of safety specification. Our work is similar to these in spirit in
the application of formal methods. However, while the concept of AL is closely
related to reinforcement learning, an agent in the AL paradigm needs to learn a
policy from demonstrations without knowing the reward function a priori.

A distinguishing characteristic of our method is the tight integration of for-
mal verification with learning from data (apprenticeship learning in particular).
Among imitation or apprenticeship learning methods, margin based algorithms
[1], [18], [19] try to maximize the margin between the expert’s policy and all
learnt policies until the one with the smallest margin is produced. The appren-
ticeship learning algorithm proposed by Abbeel and Ng [1] was largely motivated
by the support vector machine (SVM) in that features of expert demonstration
is maximally separately from all features of all other candidate policies. Our
algorithm makes use of this observation when using counterexamples to steer
the policy search process. Recently, the idea of learning from failed demonstra-
tions started to emerge. In [21], the authors propose an IRL algorithm that can
learn from both successful and failed demonstrations. It is done by reformulat-
ing maximum entropy algorithm in [24] to find a policy that maximally deviates
from the failed demonstrations while approaching the successful ones as much
as possible. However, this entropy-based method requires obtaining many failed
demonstrations and can be very costly in practice.

Finally, our approach is inspired by the work on formal inductive synthe-
sis [10] and counterexample-guided inductive synthesis (CEGIS) [22]. These
frameworks typically combine a constraint-based synthesizer with a verification
oracle. In each iteration, the agent refines her hypothesis (i.e. generates a new
candidate solution) based on counterexamples provided by the oracle. Our ap-
proach can be viewed as an extension of CEGIS where the objective is not just
functional correctness but also meeting certain learning criteria.

8 Conclusion and Future work

We propose a counterexample-guided approach for combining probabilistic model
checking with apprenticeship learning to ensure safety of the apprenticehsip
learning outcome. Our approach makes novel use of counterexamples to steer
the policy search process by reformulating the feature matching problem into a
multi-objective optimization problem that additionally takes safety into account.
Our experiments indicate that the proposed approach can guarantee safety and
retain performance for a set of benchmarks including examples drawn from Ope-
nAI Gym. In the future, we would like to explore other imitation or apprentice-
ship learning algorithms and extend our techniques to those settings.
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